This question paper contains 2 printed pages.]

. No. of Question Paper

Your Roll No. 2019

nique Paper Code

: 235104

per Code

: MAHT 103

ame of the Course

: B.Sc. (Hons.) Mathematics

ame of the Paper

: Algebra

emester

: 1

Ouration: 3 Hours

Maximum Marks:75

nstruction for Candidates

All six questions are compulsory.

- Do any two parts from each question.
- 3) Marks for each part of a question are written against the question in the margin.
- 1. a) Find the polar representation of complex number

$$z = \cos a - i \sin a, a \in [0, 2\pi)$$

b) Compute the following
$$z^n + \frac{1}{z^n} \sin z + \frac{1}{z} = \sqrt{3}$$

- c) Find the quadratic equation whose roots are the cubes of the roots of the equation $x^2 - px + q = 0$.
- 2. a) For $a, b \in \mathbb{R} \setminus \{0\}$, define $a \sim b$ if and only if $\frac{a}{b} \in \mathbb{Q}$
 - i. Prove that ~ defines an equivalence relation.
 - What is an equivalence class of 1? Show that $\sqrt{3} = \sqrt{12}$. ii.
 - b) Given three consecutive integers a, a + 1, a + 2, prove that one of them is divisible by 3.
- a Define $f: \mathbb{Z} \to \mathbb{Z}$ by 6)

$$f(x) = 3x^3 + x.$$

Determine whether or not f is one to one and/or onto.

a) Use mathematical induction to establish that for all $n \ge 1$. 3. $8^n - 3^n$ is divisible by 3.

- e) Find all integers $x, 0 \le x < 6$, satisfying the following congruence $4x \equiv 2 \pmod{6}$.
 - a) Find the general solution of the system

4.

$$2x_1 - x_2 + x_3 + 2x_4 = 0$$

$$-2x_1 + 4x_2 - x_3 + 2x_4 = -5$$

$$x_1 - 6x_2 + 3x_3 + x_4 = 7$$

$$4x_1 - 6x_2 + x_3 - 4x_4 = 9$$

by reducing the coefficient matrix to echelon form.

b) Determine whether b belongs to the linear span of a_1 , a_2 and a_3 , where

ne whether
$$b$$
 belongs to the inical span of a_1 , a_2 and $a_3 = \begin{pmatrix} -2 \\ 3 \\ -2 \end{pmatrix}$, $a_3 = \begin{pmatrix} -6 \\ 7 \\ 5 \end{pmatrix}$, and $b = \begin{pmatrix} 11 \\ -5 \\ 9 \end{pmatrix}$.

c) Balance the following chemical equation

$$NaHCO_3 + H_3C_6H_5O_7 \rightarrow Na_3C_6H_5O_7 + H_2O + CO_2$$
.

For what values of h the vectors v_1 , v_2 and v_3 given below 5.

$$v_1 = \begin{pmatrix} 3 \\ -6 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} -6 \\ 4 \\ -3 \end{pmatrix}, v_3 = \begin{pmatrix} 9 \\ h \\ 3 \end{pmatrix},$$

are linearly dependent?

b) Let
$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $y_1 = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$, and $y_2 = \begin{pmatrix} -1 \\ 6 \end{pmatrix}$. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be such that $Te_1 = y_1$ and $Te_2 = y_2$. Find $T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

- c) (i) Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Show that T is one-to-one in and only if T(x) = 0 has only the trivial solution.
 - (ii) Show that $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T(x_1, x_2) = (x_1 + x_2, x_2)$ is one-to-one
- a) Find the standard matrix of the horizontal sheer transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ 6. leaves e_1 unchanged and maps e_2 into $e_2 + 2e_1$.
 - b) Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transform and A be standard matrix representation T. Show that T is invertible linear transformation if and only if A is an inver matrix.
 - c) Determine the rank of the matrix

$$\begin{pmatrix} 2 & 5 & -3 & -4 & 8 \\ 4 & 7 & -4 & -3 & 9 \\ 6 & 9 & -5 & 2 & 4 \\ 0 & -9 & 6 & 5 & -6 \end{pmatrix}.$$